
Numerical Computing with C and C++
Zubaid Amadxarif
May 2023

Zubaid Amadxarif

The following solutions were written and tested on the CLion compiler used on a Windows 11
operating system. The outputs reflect the output of the code and can be seen when running the
code on any such compiler.

Question 1 - Self-consistent iteration
The following is the solution of question 1:

int main() {

// define x0, x1, tolerance and max_i as specified in problem sheet

double x0 = 0;

double x1;

double tolerance = 1e-12;

int max_i = 1e6;

int i;

// for loop to iteratively update x0 and update x1 to cos(x0)

for (i = 0; i < max_i; ++i) {

x1 = cos(x0);

// check if the difference between x1 and x0 is less than the tolerance and

exit if true

if (abs(x1 - x0) < tolerance) {

break;

}

x0 = x1;

}

// calculate final error

double final_error = x1 - cos(x1);

// set output precision to 16 digits

cout << setprecision(16);

// print final value, number of iterations and final error

cout << "Final value x_n+1: " << x1 << endl;

cout << "Number of iterations: " << i << endl;

cout << "Final error: " << final_error << endl;

return 0; // exit program

}

Zubaid Amadxarif

The following is the output generated:

Final value x_n+1: 0.7390851332147726

Number of iterations: 69

Final error: -6.493694471032541e-13

Process finished with exit code 0

The provided code applies the fixed-point iteration method to approximate the fixed point of the
cosine function. Starting with an initial guess of x0 = 0, the code iteratively updates x1 by
calculating the cosine of x0. The iteration continues until the difference between x1 and x0
falls below a specified tolerance. After the iterations, the code determines the final error by
computing the difference between x1 and cos(x1). The output includes the final value of
x_n+1, which is approximately 0.7390851332147726, indicating the estimated fixed point.
The code took 69 iterations to converge to this result. Additionally, the final error is
approximately -6.493694471032541e-13, indicating a high level of accuracy in the
approximation. The code successfully applies the fixed-point iteration method to find the fixed
point of the cosine function. It provides an accurate estimation of the fixed point and
demonstrates the effectiveness of the iteration method in achieving convergence.

Zubaid Amadxarif

Question 2 - Inner Products
part a) The following is the code for the solution:

#include <iostream>

#include <valarray>

#include <iomanip>

using namespace std;

// create a function that calculate the inner product of two vectors of type

valarray<long double>

long double inner_product(valarray<long double> u, valarray<long double> v)

{

return (u*v).sum();

}

int main() {

// define the vector u, inner product and difference in the question

valarray<long double> u(0.1, 1e6);

long double final_value = inner_product(u,u);

long double difference = final_value - 10000;

// print out the inner product and different

cout << setprecision(20) << "The inner product of u and u is: " << final_value

<< endl;

cout << setprecision(20) << "The difference of u*u - 10^4 is: " << difference <<

endl;

return 0;

}

The following is the output:

The inner product of u and u is: 9999.9999999998775184

The difference of u*u - 10^4 is: -1.2248158043348666979e-10

Process finished with exit code 0

The code above defines the function inner_product which uses the (u*v).sum(), and
takes two valarrays as input. The valarray u is then defined as required in the questions and the
inner product is calculated and assigned to a long double. The difference is also calculated
as required and then these are outputted to the system - the inner product is then
9999.9999999998775184, and the difference is -1.2248158043348666979e-10 which
is a very small difference.

Zubaid Amadxarif

part b) The following is the code for the solution of the Kahan Sum.

#include <iostream>

#include <valarray>

#include <iomanip>

using namespace std;

// KahanSumInnerProduct function taken from KahanSum function in week 9 content and

modified for two vectors

long double KahanSumInnerProduct(valarray<long double> u, valarray<long double> v){

long double sum = 0.; // initialise sum to zero

long double c = 0.; // initialise the Kahan sum error term to zero

long double y;

long double t;

for(int i = 0; i < u.size(); ++i){

y = u[i] * v[i] - c; // adjust the current value by subtracting the Kahan

sum error term

t = sum + y;

c = (t - sum) - y;

sum = t;

}

return sum; // return the final Kahan sum

}

int main() {

// define the vector u, inner product using Kahan sum, and the difference in the

question

valarray<long double> u(0.1, 1e6);

long double final_value = KahanSumInnerProduct(u,u);

long double difference = final_value - 10000;

// print it all out

cout << setprecision(20) << "The inner product of u and u is: " << final_value

<< endl;

cout << setprecision(20) << "The difference of u*u - 10^4 is: " << difference <<

endl;

return 0;

}

The following is the output:

The inner product of u and u is: 10000.00000000000111

Zubaid Amadxarif

The difference of u*u - 10^4 is: 1.1102230246251565404e-12

Process finished with exit code 0

The code above uses the Kahan Sum provided in Week 9 from the Module Page and it has
been modified to work with two vectors instead of one which looks at both u[i] and v[i]. The
main function contains the same as the code in part a, where we define the final_value,
difference and the valarray u. The output is provided and the inner product is close to
10000, with the difference is 1.11022e-12 which is very small.

part c) The following is the code:

#include <iostream>

#include <valarray>

#include <cmath>

#include <iomanip>

using namespace std;

// Define the Norm class

class Norm {

public:

int m;

// Constructor to initialize m

Norm(int m) : m(m) {}

// Overload the operator() to calculate the weighted norm of a valarray

long double operator()(const valarray<double>& u) const {

// initialise sum to store the weighted sum and iterate through valarray

elements

double sum = 0.0;

for (size_t i = 0; i < u.size(); ++i) {

sum += pow(u[i], m);

}

// Return the m-th root of the sum as the norm

return pow(sum, 1.0 / m);

}

};

int main() {

Norm l2norm(2); // Create an instance of Norm with m = 2 (L2 norm)

valarray<double> u(0.1, 1e6); // Initialize a valarray u with size 1000000 and

each element set to 0.1

Zubaid Amadxarif

// Calculate the L2 norm and L2 norm squared of u using the function object

double norm_l2 = l2norm(u);

double norm_l2_squared = pow(norm_l2, 2);

// Output the L2 norm squared

cout << setprecision(20) << "L2 norm squared: " << norm_l2_squared << endl;

return 0;

}

The following is the output of the code:

L2 norm squared: 10000.000000171858119

Process finished with exit code 0

The Norm class is defined with an int member variable m and an overloaded operator()
function. The constructor initialises the member variable m with the provided argument. The
operator() function takes a valarray<double> u as input and calculates the weighted
norm of u using the formula sum(pow(u[i], m))^(1/m). It returns the calculated weighted
norm. An instance of the Norm class is created with m set to 2, representing the L2 norm and
the valarray vector u is initialised of the same size as before. The L2 Norm is firstly calculated
followed by the L2 Norm squared which is outputted as very close to 10000, which shows that
all three methods of question 2 are valid methods of calculating the inner product of two vectors.

Zubaid Amadxarif

Question 3 - Finite Differences
part a) The following is the code for the solution:

#include <iostream>

#include <cmath>

#include <valarray>

#include <iomanip>

using namespace std;

long double f(long double x) {

return sin(3 * x);

}

long double df_analytical(long double x) {

return 3 * cos(3 * x);

}

int main() {

// define all the constants

const int n = 31;

const long double a = -1;

const long double b = 1;

const long double X = (b - a) / n;

// define all valarrays from question

valarray<long double> x(n + 1);

valarray<long double> fx(n + 1);

valarray<long double> df_numerical(n + 1);

valarray<long double> e(n + 1);

// calculate x[i] and fx[i]

for (int i = 0; i <= n; i++) {

x[i] = a + i * X;

fx[i] = f(x[i]);

}

// numerical derivative for i = 0

df_numerical[0] = (-3 * fx[0] + 4 * fx[1] - fx[2]) / (2 * X);

// numerical derivative for i = 1 to (N-1)

for (int i = 1; i < n; i++) {

df_numerical[i] = (fx[i + 1] - fx[i - 1]) / (2 * X);

}

// numerical derivative for i = N

df_numerical[n] = (fx[n - 2] - 4 * fx[n - 1] + 3 * fx[n]) / (2 * X);

Zubaid Amadxarif

// difference between numerical and analytical derivatives

for (int i = 0; i <= n; i++) {

e[i] = df_numerical[i] - df_analytical(x[i]);

}

// the errors e[i] are printed

cout << "The following are the error values between numerical and analytical

derivatives:\n";

for (int i = 0; i <= n; i++) {

cout << setprecision(20) << "e[" << i << "] = " << e[i] << endl;

}

return 0;

}

The following is the output of the code:

The following are the error values between numerical and analytical

derivatives:

e[0] = -0.035839139032681525347

e[1] = 0.01765529658054848061

e[2] = 0.016142928006157757862

e[3] = 0.014027715017131953037

e[4] = 0.011388648508785184903

e[5] = 0.0083242822567274643878

e[6] = 0.0049490525068953724729

e[7] = 0.0013890044477466825291

e[8] = -0.0022229148439880636967

e[9] = -0.0057518212029143103606

e[10] = -0.009065930513570635927

e[11] = -0.012041480080202145403

e[12] = -0.014567350443189778673

e[13] = -0.016549215044189315334

e[14] = -0.017913062774136786137

e[15] = -0.018607961857452324974

e[16] = -0.018607961857452326275

e[17] = -0.017913062774136786354

e[18] = -0.016549215044189313165

e[19] = -0.014567350443189778456

e[20] = -0.012041480080202147246

e[21] = -0.0090659305135706365775

e[22] = -0.0057518212029143093848

e[23] = -0.0022229148439880628565

e[24] = 0.0013890044477466822987

Zubaid Amadxarif

e[25] = 0.0049490525068953710635

e[26] = 0.0083242822567274639542

e[27] = 0.011388648508785186204

e[28] = 0.014027715017131953904

e[29] = 0.016142928006157757862

e[30] = 0.017655296580548479092

e[31] = -0.035839139032681530768

Process finished with exit code 0

The code above implements and calculates the first derivative of the given function f(x) =
sin(3x) using the finite differencing method.
The code begins by defining both f(x) = sin(3x) and the differential f’(x) = 3cos(3x)
to be used for the error terms. The constants n, a, b and delta_X are defined as constants
to determine the number of grid points, the interval of the grid and the step size respectively.
The variables x[i], f(x[i]), and f’(x[i]) and e[i] are defined as valarrays and
x[i] and f(x[i]) are calculated as a loop iterates through all the grid points and calculator
the points using the f(x) that was already defined.
The code then moves on and calculates the numerical derivatives using the given second-order
differencing equations in the problem sheet for the boundary points i = 0, i = N and then

Zubaid Amadxarif

all the points in between (i = 1, 2, .. , N - 1). Another loop follows this and the error
values are calculated as the difference between the numerical and analytical derivatives.
These errors are outputted as can be seen from the output above.
We can see from the plot of these error points that there seems to be a symmetrical pattern with
the smallest error values for i = 7 and i = 24.

part b) The following is the code for the solution:

#include <iostream>

#include <iomanip>

#include <cmath>

#include <valarray>

using namespace std;

class Norm {

public:

int m;

Norm(int m) : m(m) {}

long double operator()(const valarray<long double>& u) const {

double sum = 0.0;

for (size_t i = 0; i < u.size(); ++i) {

sum += pow(abs(u[i]), m);

}

return pow(sum, 1.0 / m);

}

};

// define f(x) as sin(3x)

long double f(long double x) {

return sin(3 * x);

}

// use for the error term calculation

long double df_analytical(long double x) {

return 3 * cos(3 * x);

}

int main() {

// instance of class created to make a l1_norm

Norm l1_norm(1);

// set table width

cout << setw(10) << "N" << setw(30) << "N^2(e)" << endl;

// for loop running for n values 16 to 128 from question

Zubaid Amadxarif

for (int j = 16; j <= 128; j *= 2){

// a, b, n and delta x are defined

double a = -1;

double b = 1;

int n = j - 1;

double X = (b - a) / n;

// follows the same as 3a to obtain the error terms

valarray<long double> x(n + 1);

valarray<long double> fx(n + 1);

valarray<long double> df_numerical(n + 1);

valarray<long double> e(n + 1);

for (int i = 0; i <= n; i++) {

x[i] = a + i * X;

fx[i] = f(x[i]);

}

df_numerical[0] = (-3 * fx[0] + 4 * fx[1] - fx[2]) / (2 * X);

for (int i = 1; i < n; i++) {

df_numerical[i] = (fx[i + 1] - fx[i - 1]) / (2 * X);

}

df_numerical[n] = (fx[n - 2] - 4 * fx[n - 1] + 3 * fx[n]) / (2 * X);

for (int i = 0; i <= n; i++) {

e[i] = df_numerical[i] - df_analytical(x[i]);

}

// (e) is calculated using the formula is the problem sheet and then

outputted in a table

long double E = 1.0 / (n + 1) * l1_norm(e);

cout << setprecision(20) << setw(10) << n << setw(30) << n * n * E <<

endl;

}

return 0;

}

The following is the output of the code:

N N^2(e)

15 13.372657624371884003

31 12.399050424673247106

63 11.786666179203728316

127 11.479774927671680358

Zubaid Amadxarif

Process finished with exit code 0

The given code snippet demonstrates 2nd-order convergence by calculating the mean error
(e) and N^2(e) for a numerical differentiation problem using the central difference method
and outputs the results in a tabular format showing that the mean error decreases proportionally
as N increases.
The code begins by bringing the Norm class from question 2C, defining f(x) and then the
derivative of f(x) which is used to calculate the error terms.
The main function begins by creating the L1 norm instance of the Norm class followed by a loop
from 16 to 128 for N as required in the problem sheet. The code then follows the same as
part a and calculates x, f(x) and numerical derivative values for each N. The valarray e[i]
is created for each N. The mean error (E) is then calculated using the formula provided in the
problem which is the L1-norm divided by (n + 1) . The values are then outputted showing
the 2nd-order convergence.
We can see from the table that the mean error E decreases proportionally as N increases
confirming the 2nd-order convergence.

Zubaid Amadxarif

Question 4 - Numerical Integration
part a) The following is the code for the solution:

#include <iostream>

#include <cmath>

#include <valarray>

#include <iomanip>

using namespace std;

long double f(long double x) {

return sin(1 / (x + 0.5));

}

// inner_product function from question 2a

long double inner_product(valarray<long double> u, valarray<long double> v) {

return (u * v).sum();

}

long double composite_trapezium_rule(const valarray<long double> &function_values,

const valarray<long double> &weights) {

// Use the inner_product function instead of directly calculating the dot

product

return inner_product(function_values, weights);

}

int main() {

int N = 127; // N + 1 = 128

long double a = 0;

long double b = 10;

long double delta_x = (b - a) / N;

valarray<long double> gridpoints(N + 1);

valarray<long double> function_values(N + 1);

valarray<long double> weights(N + 1);

// Populate the gridpoints, function_values, and weights arrays

for (int i = 0; i <= N; ++i) {

gridpoints[i] = a + i * delta_x;

function_values[i] = f(gridpoints[i]);

if (i == 0 || i == N) {

weights[i] = delta_x * 0.5;

} else {

weights[i] = delta_x;

}

}

// Calculate the approximate integral using the composite trapezium rule

Zubaid Amadxarif

long double approx_integral = composite_trapezium_rule(function_values,

weights);

// Output the results

cout << setprecision(20) << "Approximated integral (trapezium): " <<

approx_integral << endl;

cout << setprecision(20) << "Difference: " << approx_integral -

2.74324739415100920 << endl;

return 0;

}

The following is the output of the code:

Approximated integral (trapezium): 2.7423926434484638586

Difference: -0.0008547507025455187632

Process finished with exit code 0

The code above performs numerical integration using the composite trapezium rule provided in
the problem sheet. The code begins by defining f(x), and brings the inner_product
function created in question 2a. The composite_trapezium_rule function is defined taking
the parameters function_values and weights. This uses the inner_product function
to calculate the approximate integral.
The main function is then initialised with the N, a, b and delta_x being defined representing
the number of subdivisions, interval boundaries and the step size. A loop fills the valarrays by
calculating the grid points, evaluating the function at those points, and assigning weights based
on the trapezium rule and the approximate integral is calculated using the
composite_trampezium_rule. The results are then outputted including the approximated
integral and the difference between the Itrapezium and Iexact. Which are
2.7423926434484638586 and -0.0008547507025455187632. As the difference is very
small this is a very good approximation.

part b) The following is the code for the solution:

#include <iostream>

#include <cmath>

#include <valarray>

#include <iomanip>

using namespace std;

long double f(long double x) {

return sin(1 / (x + 0.5));

}

Zubaid Amadxarif

long double df_exact(long double x){

return (-1 / ((x + 0.5) * (x + 0.5))) * cos(1/ (x + 0.5));

}

// inner_product function from question 2a

long double inner_product(valarray<long double> u, valarray<long double> v) {

return (u * v).sum();

}

long double composite_hermite_rule(const valarray<long double> &function_values,

const valarray<long double> &weights) {

// Use the inner_product function instead of directly calculating the dot

product

return inner_product(function_values, weights);

}

int main() {

int N = 127; // N + 1 = 128

long double a = 0;

long double b = 10;

long double delta_x = (b - a) / N;

valarray<long double> gridpoints(N + 1);

valarray<long double> function_values(N + 1);

valarray<long double> weights(N + 1);

// Populate the gridpoints, function_values, and weights arrays

for (int i = 0; i <= N; ++i) {

gridpoints[i] = a + i * delta_x;

function_values[i] = f(gridpoints[i]);

if (i == 0 || i == N) {

weights[i] = delta_x * 0.5;

} else {

weights[i] = delta_x;

}

}

// Calculate the approximate integral using the composite trapezium rule

long double composite = composite_hermite_rule(function_values, weights);

// RHS of hermite rule

long double hermite_approx = ((delta_x * delta_x) / 12) * (df_exact(a) -

df_exact(b));

// Output the results

cout << setprecision(20) << "Approximated integral (hermite): " << composite +

hermite_approx << endl;

cout << setprecision(20) << "Difference: " << composite + hermite_approx -

Zubaid Amadxarif

2.74324739415100920 << endl;

return 0;

}

The following is the output of the code:

Approximated integral (hermite): 2.7432573470552861041

Difference: 9.9529042767267702357e-06

Process finished with exit code 0

The code above implements the composite Hermite rule to approximate the integral of a
function f(x) = sin(3x).
The code firstly defines f(x) which takes x as an input and also defines df_exact(x) which
returns the exact derivative of f(x) as needed in the approximation. The code uses the
inner_product function that was calculated in question 2a. The code follows the same as 4a
where the number of grid points N, the interval [a,b] and delta_x are defined. This then
follows the same until after the loop where the inner product of w[i] and f[i] are calculated
and added to the delta_x squared divided by 12 which is multiplied by f’(a) - f’(b). The
approximated integral is then outputted along with the difference as can be seen above. The
approximate is also very close to the approximate calculated in part a, with the error being
relatively small.

part c) The following is the code for the solution:

#include <iostream>

#include <cmath>

#include <valarray>

#include <iomanip>

using namespace std;

// inner_product function from question 2a

long double inner_product(valarray<long double> u, valarray<long double> v) {

return (u * v).sum();

}

// Function f(x) = sin(1 / (x + 0.5))

long double f(long double x) {

return sin(1.0 / (x + 0.5));

}

// Compute the modified Clenshaw-Curtis weights and perform the quadrature

Zubaid Amadxarif

long double clenshaw_curtis_quadrature(int n, double a, double b, long double

(*func)(long double)) {

// define w, theta, x, f as valarrays

valarray<long double> weights(n + 1);

valarray<long double> theta(n + 1);

double range = (b - a) * 0.5;

double h = (b - a) / 2.0;

valarray<long double> x(n + 1);

valarray<long double> function_values(n + 1);

// Loop through each point to calculate the weights and function values

for (int i = 0; i <= n; ++i) {

if (i == 0 || i == n) {

weights[i] = range / (n * n);

} else {

theta[i] = i * M_PI / n;

double cos_sum = 0.0;

// Calculate the sum of cosines for the current point

for (int k = 1; k <= n / 2; ++k) {

cos_sum += 2.0 * cos(2.0 * k * theta[i]) / (4.0 * k * k - 1);

}

// Calculate the weight for the current point

weights[i] = range * 2.0 / n * (1.0 - cos_sum);

}

// calculate x values and function values at x

x[i] = a + h * (1.0 - cos(i * M_PI / n));

function_values[i] = func(x[i]);

}

// Calculate the approximate integral using the Clenshaw-Curtis quadrature and

inner product function

return inner_product(function_values, weights);

}

int main() {

// define n, a and b

int n = 127;

double a = 0.0;

double b = 10.0;

// Calculate the approximated integral

long double approx_integral = clenshaw_curtis_quadrature(n, a, b, f);

// output the integral and the difference

cout << setprecision(20) << "Approximated integral (Clenshaw-Curtis): " <<

Zubaid Amadxarif

approx_integral << endl;

cout << setprecision(20) << "Difference: " << approx_integral -

2.74324739415100920 << endl;

return 0;

}

The following is the output for the code:

Approximated integral (Clenshaw-Curtis): 2.7432473941510092236

Difference: -1.5373986805844452874e-16

Process finished with exit code 0

The code above implements the Clenshaw-Curtis quadrature weights and uses it to compute
the integral of a given function over the specified interval.
The main function inside this code is the clenshaw_curtis_quadrature which takes as
input the number of points n, the endpoints of the integration interval a and b, and a function
pointer to the function f(x) being integrated. It first defines the valarrays that will hold the
weights, theta values, x values and function values. It then loops through each point calculating
the weights and function values at that point. For the weights, it first sets the weights at the
endpoints to a fixed value and calculates the weights at the remaining points using the function
specified. Once the weights and function values are calculated, it uses the inner_product
function from question 2a to calculate the approximate integral using the Clenshaw-Curtis
quadrature formula. Finally, in the main function, it calls clenshaw_curtis_quadrature
with a specified number of points n, the endpoints of the integration interval a and b, and the
function f(x) = sin(1/(x+0.5)). It then outputs the approximated integral and the
difference between the approximated integral and the known exact value as can be seen above.
The approximations are very close to the answers in part a and b, with the error also being very
small.

part d) The following is the code for the solution:

#include <iostream>

#include <cmath>

#include <random>

#include <iomanip>

using namespace std;

// define f(x) from the problem sheet

double f(const double x) {

return sin(1 /(x + 0.5));

}

Zubaid Amadxarif

// Uniform distribution function from Exercise 19 in module page (modified)

class Uniform {

mt19937_64 mt;

uniform_real_distribution<double> u; // Use uniform_real_distribution instead of

uniform_int_distribution

public:

Uniform(const unsigned int s) : mt(s) {}

double operator()() {

return u(mt);

}

};

// Mean Value function from Exercise 19 in the module page (modified)

double mean_value(const double a, const double b, const int N, double

(*func)(double), Uniform& u) {

double S = 0.0;

for (int i = 0; i<N; i++) {

const double x = a + (b-a)*u();

S += func(x);

}

return (b - a)*S / double(N);

}

int main() {

// bounds and uniform distribution with seed is defined

const int a = 0;

const int b = 10;

const int seed = 1234;

Uniform unif(seed);

// loop to calculate and print the Mean Value Monte Carlo method and error

values with the N values specified

for (int i = 1000; i <= 100000; i *= 10) {

long double montecarlo = mean_value(a, b, i, f, unif);

cout << setprecision(20) << "The Monte Carlo Mean value integration method

for N = " << i << " is equal to: " << montecarlo << endl;

cout << setprecision(20) << "The error value for the same value of N is: "

<< montecarlo - 2.74324739415100920 << endl;

cout << " " << endl;

}

return 0;

}

Zubaid Amadxarif

The following is the output for the code:

The Monte Carlo Mean value integration method for N = 1000 is equal to:

2.857785013439380073

The error value for the same value of N is: 0.11453761928837069561

The Monte Carlo Mean value integration method for N = 10000 is equal to:

2.7245346262576712881

The error value for the same value of N is: -0.018712767893338089209

The Monte Carlo Mean value integration method for N = 100000 is equal to:

2.7457079339471714974

The error value for the same value of N is: 0.0024605397961621200409

Process finished with exit code 0

The code above implements the Mean Value Monte Carlo integration method to estimate the
value of the integral function f(x) = sin (1 + (x + 0.5)).
The code begins by defining f(x) and then by defining the Uniform class to generate random
numbers required for the Monte Carlo method. This specific function is from the module page
and has been modified to use the uniform_real_distribution instead of the integer
version. The Mean Value Monte Carlo function is then defined to compute the Monte Carlo
estimate of the integral with parameters a, b, N, func, unif which are the bounds, the
size of N, the function for integration and the uniform distribution.
After this, the main function defines these values to be passed and a for loop is created to
compute and output the integral I with N = 1000, N = 10000 and N = 100000 samples.
The difference I_MonteCarlo - I_exact is also outputted to the screen and we can see
that as N increases, the error value decreases indicating a better estimate as N gets larger.

Zubaid Amadxarif

Question 5 - Stellar Equilibrium
part a) The following is the code for the solution:

#include <valarray>

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

valarray<long double> F(const long double t, const valarray<long double>

&u) {

// define h, m, h' and m' from problem sheet

long double h = u[0];

long double m = u[1];

long double h_dash;

long double m_dash;

// set functions based on given t

if (t == 0) {

h_dash = 0.0; // h_dash[x] = 0 when x = 0

m_dash = 0.0; // m_dash[x] = 0 at x = 0

} else if (t > 0) {

h_dash = (-1/(t*t))*m; // h_dash[x] = -m[x] / x^2 when x > 0

m_dash = h*t*t; // m_dash[x] = h[x] * x^2

}

// return valarray with h' and m' as parameters

valarray<long double> f = {h_dash, m_dash};

return f;

}

int main() {

return 0;

}

The following is the output for the code:

return 0

Zubaid Amadxarif

The code above defines the function F as needed in the rest of question parts. It defines h and
m as the first and second elements of the u valarray and also initiates h’[x] and m’[x].
Based on the conditions when t = 0 and t > 0, we use the defined first order differential to
define this. The valarray f is returned with h’ and m’ as parameters. As part a only asked
for a function, there is no specific output.

part b & c) The following is the code for the solution:

#include <valarray>

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

valarray<long double> F(const long double t, const valarray<long double> &u) {

// define h, m, h' and m' from problem sheet

long double h = u[0];

long double m = u[1];

long double h_dash;

long double m_dash;

// set functions based on given t

if (t == 0) {

h_dash = 0.0; // h_dash[x] = 0 when x = 0

m_dash = 0.0; // m_dash[x] = 0 at x = 0

} else if (t > 0) {

h_dash = (-1/(t*t))*m; // h_dash[x] = -m[x] / x^2 when x > 0

m_dash = h*t*t; // m_dash[x] = h[x] * x^2

}

// return valarray with h' and m' as parameters

valarray<long double> f = {h_dash, m_dash};

return f;

}

// 4th-order Runge-Kutta method implementation with the parameters stated in

problem sheet

valarray<long double> RK4(const long double t, const long double dt, const

valarray<long double> &val, valarray<long double> f(const long double, const

valarray<long double> &)) {

unsigned long long m = val.size();

valarray<long double> k1(m), k2(m), k3(m), k4(m);

k1 = dt * f(t, val);

k2 = dt * f(t + 0.5 * dt, val + 0.5 * k1);

k3 = dt * f(t + 0.5 * dt, val + 0.5 * k2);

k4 = dt * f(t + dt, val + k3);

Zubaid Amadxarif

return val + (k1 + 2.0*(k2 + k3) + k4)/6.0;

}

int main() {

// initialise begin and final time

long double ti = 0.;

long double tf = M_PI;

// define the exact and numerical values of h

long double h_exact;

long double h_numerical;

// define n and step size

int n = 150;

long double dt = (tf-ti)/(n);

// define valarrays to store time values, solution values and error values

valarray<long double> T(n+2);

valarray<valarray<long double>> U(n+2);

valarray<long double> e(n+2);

// initial condition from problem sheet

U[0] = {1.0, 0.0};

// initialise table with x, h[x] and error values

cout << "x" << setw(30)

<< fixed << setprecision(20) << "h(x)"

<< setw(30) << fixed << setprecision(20)

<< "error: e[i]" << endl;

// loop to calculate and output current time value, the RK4 solution, and error

value

// where error value is h_numerical - h_exact.

for (int i = 0; i <= n; i++) {

T[i] = ti + i * dt;

U[i + 1] = RK4(T[i], dt, U[i], F);

h_numerical = U[i][0];

if (T[i] == 0.0) {

h_exact = 1;

e[i] = h_numerical - h_exact;

} else {

h_exact = sin(T[i]) / T[i];

e[i] = h_numerical - h_exact;

}

for (int j = 0; j <= n; j += 10) {

if (i == j) {

Zubaid Amadxarif

cout << setprecision(20) << T[i] << setw(30) << fixed

<< setprecision(20) << U[i][0] << setw(30) << fixed

<< setprecision(20) << e[i] << endl;

break;

}

}

}

cout << endl;

return 0;

The following is the output of the code:

X h(x) error: e[i]

0.00000000000000000000 1.00000000000000000000 0.00000000000000000000

0.20943951023931954107 0.99268533627883450093 -0.00001986332837225930

0.41887902047863908214 0.97099276194445305408 -0.00001944728730985513

0.62831853071795862320 0.93547054588383160535 -0.00001873790480743276

0.83775804095727816428 0.88704602516288019417 -0.00001776789630359322

1.04719755119659770537 0.82697677899451009200 -0.00001656413817799498

1.25663706143591724640 0.75681157059346761915 -0.00001515804718937755

1.46607657167523678754 0.67834245289833402907 -0.00001358564872926664

1.67551608191455632857 0.59354964706712187592 -0.00001188666155851545

1.88495559215387586960 0.50454104909263803019 -0.00001010333446665437

2.09439510239319541074 0.41348839238374606941 -0.00000827918259800329

2.30383461263251495188 0.32256219433188526799 -0.00000645768963614476

2.51327412287183449280 0.23386763992167696293 -0.00000468102548283603

2.72271363311115403394 0.14938350490430895750 -0.00000298882365460805

2.93215314335047357508 0.07090609719885867996 -0.00000141705879898657

3.14159265358979311600 0.00000000293958249709 0.00000000293958245811

Process finished with exit code 0

The code above implements a numerical method for solving a system of first-order ODEs. The
method specified is the 4th-order Runge-Kutta method as specified in the problem sheet.
The code here begins by defining the function F, and then defining the RK4 function with
parameters specified.
The RK4 function starts by determining the size m of the state vector val, and initialising four
valarray objects k1, k2, k3, and k4 to store the intermediate slopes. k1 is calculated as the
product of dt and the derivative of the state variables at the current time and state, f(t, val).
k2 is calculated as the product of dt and the derivative of the state variables at the midpoint of
the time step (t + 0.5 * dt) and the midpoint of the state (val + 0.5 * k1). k3 is
similar to k2, but uses k2 instead of k1 to estimate the state at the midpoint. k4 is calculated as
the product of dt and the derivative of the state variables at the end of the time step (t +

Zubaid Amadxarif

dt) and the estimated end state (val + k3). The next state is calculated as the current state
plus a weighted average of the four slopes. The weights for k1 and k4 are 1/6 each, while the
weights for k2 and k3 are 1/3 each.
The main function of the code sets up an initial and final time, ti and tf, and calculates a time
step dt based on a number of steps n. The code then initialises valarrays to store the time
values (T), the solution values (U), and error values (e).
The initial condition for h and m is set as U[0] = {1.0, 0.0} and the code then enters a
loop where for each time step it calculates the next state using the RK4 function, and the error
between the numerical solution for h and the exact solution. The numerical solution
h_numerical is calculated by the RK4 method while the exact solution h_exact is given by
the sin function specified from the problem sheet. The error e[i] is the difference between
these two values.
Finally, the code outputs the current time value, the numerical solution, and the error every 10th
step in a tabular setting.
The error gets smaller and smaller as N tends to infinity and this is expected. e[150] is equal
to h(x) when n = 150, and as N increases the error will tend to 0.

part d) The following is the output of the code:

#include <valarray>

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

// same as part bc

valarray<long double> F(const long double t, const valarray<long double> &u) {

long double h = u[0];

long double m = u[1];

long double h_dash;

long double m_dash;

if (t == 0) {

h_dash = 0.0;

m_dash = 0.0;

} else if (t > 0) {

h_dash = (-1/(t*t))*m;

m_dash = h*t*t;

}

valarray<long double> f = {h_dash, m_dash};

return f;

}

// Norm class from question 2c

class Norm {

Zubaid Amadxarif

public:

int m;

Norm(int m) : m(m) {}

long double operator()(const valarray<double>& u) const {

// initialise sum to store the weighted sum and interate through valarray

elements

double sum = 0.0;

for (size_t i = 0; i < u.size(); ++i) {

sum += pow(u[i], m);

}

return pow(sum, 1.0 / m);

}

};

// same as part bc

valarray<long double> RK4(const long double t, const long double dt, const

valarray<long double> &val, valarray<long double> f(const long double, const

valarray<long double> &)) {

unsigned long long m = val.size();

valarray<long double> k1(m), k2(m), k3(m), k4(m);

k1 = dt * f(t, val);

k2 = dt * f(t + 0.5 * dt, val + 0.5 * k1);

k3 = dt * f(t + 0.5 * dt, val + 0.5 * k2);

k4 = dt * f(t + dt, val + k3);

return val + (k1 + 2.0*(k2 + k3) + k4)/6.0;

}

int main() {

// same as part bc

long double ti = 0.;

long double tf = M_PI;

long double h_exact;

long double h_numerical;

int n = 150;

long double dt = (tf-ti)/(n);

valarray<long double> T(n+2);

valarray<valarray<long double>> U(n+2);

valarray<double> e(n + 2);

U[0] = {1.0, 0.0};

for (int i = 0; i <= n; i++) {

T[i] = ti + i * dt;

U[i + 1] = RK4(T[i], dt, U[i], F);

h_numerical = U[i][0];

if (T[i] == 0.0) {

h_exact = 1;

e[i] = h_numerical - h_exact;

Zubaid Amadxarif

} else {

h_exact = sin(T[i]) / T[i];

e[i] = h_numerical - h_exact;

}

}

// create the l1 and l2 norm instances from Norm class

Norm l1norm(1);

long double norm_l1 = l1norm(abs(e));

Norm l2norm(2);

long double norm_l2 = l2norm(abs(e));

// output results

cout << setprecision(20);

cout << "L1 Norm: " << norm_l1 << endl;

cout << "L2 Norm: " << norm_l2 << endl;

return 0;

}

The following is the output of the code:

L1 Norm: 0.0017577184344788304281

L2 Norm: 0.00016383079344846869312

Process finished with exit code 0

The code above calculates and outputs the L1 and L2 Norms of the error values.
The code begins exactly the same as part b&c, where F is defined, the Norm class is brought
from question 2c, RK4 is defined, and the main function calculates the first-order ODEs using
the RK4 function. The error values are calculated for each i, and assigned to the valarray as
specified. Instances of the Norm class are initiated as L1Norm and L2Norm. The absolute value
of the error is taken and passed to both the L1Norm and L2Norm as needed. This is then
outputted as can be seen above.
The L1 norm is 0.00176, which is relatively small, suggesting that the overall absolute error in
the numerical solution is quite low. The L2 norm is around 0.000164, which is even smaller
than the L1 norm. The L2 norm tends to emphasise larger errors because they contribute
more to the sum when squared. Thus, this small L2 norm suggests that there are no
particularly large errors in the numerical solution, or in other words, there are no significant
outliers in the error.

